

MALINENI LAKSHMAIAH

WOMEN'S ENGINEERING COLLEGE

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PEDAGOGICAL METHODS-ACADEMIC YEAR: 2024-25

S.No	Subject Name	Faculty Name	Topics	Pedagogical Initiative	Dates of Plan	Venue of Implementation	No. of students involved
1	Radar Engineering	Ms. N. Lakshmi Tirupathamma	Comparison of Pulse Doppler and FM-CM Radar	Blended Learning Method	03-08-2024	ARC lab Room No-102	45
2	Optical Communication	Mrs. Ch. Pushpa	Total Internal Reflection	Fish Bowl Method	05-08-2024	Electronics lab Room No-329	13
3	DC	Mrs. P. Santhi	Source Coding Techniques	Experiential Learning Through Real-World Experiments	06-08-2024	III-B.Tech ECE Class Room No-327	65
4	CYBER SECURITY	Mrs. M. Chandana	DOS & DDOS Attacks	Experiential Learning	12-09-2024	IV B.Tech ECE Class Room No-318	70
5	PTSP	Dr.Ch. Ramesh	Random Variables, Random Processes Problems and Concept	Seminar & Problem Solving	24-09-2024	II B.Tech ECE Class Room No-321	60
6	STLD	Mr. T. Venkata Rao	Concept of Master –Slave Flip-flop (Sequential Logic Circuits)	Blended Learning	26-09-2024	Processors & Controller Lab Room No-333	65
7	EDC	Mrs. K. Sarada	Implementation of Amplifier circuits	Experiential Learning	27-09-2024	Hardware Lab (Electronics Lab) Room No-329	35
8	Analog IC Applications	Mrs P. Rajani	555Timer	PPT	25-10-2024	III-B.Tech ECE Class Room No-326	60
9	LCS	Mrs. N.N. Rajakumari	Translational Mechanical Systems	Brainstorming Method	10-12-2024	Communications Lab Room No-330	60
10	AC	Mrs. P. Santhi	Types of Pulse Modulations and its Responses	Blended Learning Method	06-02-2025	Centre of Excellences Lab (NB 102)	64
11	VLSI	Mr. T. Venkata Rao	Implementation of Pseudo NMOS circuits	Experiential Learning	19-02-2025	ECAD Lab Room No-315	60

Academic Year : 2024-25

Name of the Course : Radar Engineering

Year & Semester : IV B.Tech. I Semester

Name of the Topic : Comparison of Pulse Doppler and FM-CW

Radar

Course Faculty : Ms. N. Lakshmi Tirupathamma

Pedagogical Initiative : Blended learning Method

Date : 03-08-2024

Venue : Room No-315

No. of students involved : 45

Objectives:

- 1. To understand the working principles, features, and differences between Pulse Doppler and FM-CW radar systems.
- 2. To analyze the advantages and limitations of each radar type in different applications such as aviation, automotive, and weather monitoring.
- 3. To develop analytical thinking by comparing system parameters like range, velocity detection, and signal processing techniques.

Method (Blended Learning):

- 1. Online learning materials were shared through the Google Class Room for self-paced study.
- 2. In-class sessions were conducted for interactive discussions, problem-solving, and real-time Q&A based on the online content.
- 3. A comparative case study assignment was given, where students analyzed real-world applications using both radar types.

- 1. Enabled students to grasp complex radar concepts with the help of multimedia and visual simulations.
- 2. Promoted independent learning as well as collaborative discussion through a mix of online and offline activities.
- 3. Improved critical thinking and application skills by evaluating real-world use cases of Pulse Doppler and FM-CW systems.

Figure 1 & 2: Interactive In-class Session on Pulse Doppler and FM-CW Radar

Figure 2: Generation of a continuous chirp signal using MATLAB

Academic Year : 2024-25

Name of the Course : Optical Communication

Year & Semester : IV B.Tech. I Semester

Name of the Topic : Total Internal Reflection

Course Faculty : Mrs. Ch. Pushpa

Pedagogical Initiative : Fish Bowl method

Date : 05-08-2024

Venue : Room No-329

No. of students involved : 13

Objectives:

- 1. To understand the concept and conditions required for Total Internal Reflection (TIR) in optics.
- 2. To explore real-life applications of TIR such as fibre optics, diamonds, and endoscopes.
- 3. To clarify misconceptions and improve conceptual clarity through peer-led discussions.

Method (Fish Bowl):

- 1. A small group (Inner Circle) of students discussed real-life scenarios and solved problems related to TIR while others observed.
- 2. The other group (Outer Circle) noted important points and later joined the discussion, rotating roles to ensure full participation.

- 1. Encouraged active learning and improved communication among students.
- 2. Helped students understand the topic deeply by listening to and building on each other's ideas.
- 3. Increased confidence in applying TIR concepts to practical situations like medical instruments and optical fibres.

Figure 1 & 2: Fish Bowl Circle Discussion for Active Learning on Total Internal Reflection

Department of Electronics and Communication Engineering INNOVATIVE TEACHING LEARNING METHOD

Academic Year : 2024-25

Name of the Course : Digital Communication

Year & Semester : III B. Tech. I Semester

Name of the Topic : Source Coding Techniques

Course Faculty : Mrs. P. Santhi

Pedagogical Initiative: Experiential Learning Through Real-World

Experiments

Date : 06-08-2024

Venue : Room No-327

No. of students involved : 65

Objectives:

- 1. To explore how source coding reduces data size while preserving information integrity.
- 2. To familiarize students with practical coding algorithms like Huffman and Shannon-Fano used in real-world systems.
- 3. To develop problem-solving skills by applying compression techniques to multimedia and communication systems.

Method (Experiential Learning):

- 1. Students worked on compressing real files (text, image, audio) using coding techniques to observe space-saving benefits.
- 2. Case studies of applications like ZIP files, MP3, and JPEG compression were analyzed and discussed.
- 3. Simulated scenarios were given where students had to choose and implement the best source coding method for a given use-case.

- 1. Students gained hands-on experience in applying theory to real-life data compression challenges.
- 2. Improved ability to link theoretical concepts with practical systems like mobile communication and multimedia storage.

Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada : : Accredited by "NBA" for our CSE & ECE and NAAC A+ Grac Pulladigunta (V) Vatticherukuru (M), Guntur (Dist.)

3. Fostered critical thinking and innovation in designing efficient encoding systems for modern applications.

Figure 1, 2 & 3: Hands-on session on JPEG File Compression

Academic Year : 2024-25

Name of the Course : Cyber Security

Year & Semester : IV B.Tech. I Semester

Name of the Topic : DOS & DDOS Attacks

Course Faculty : Mrs. M. Chandana

Pedagogical Initiative : Experiential Learning

Date : 12-09-2024

Venue : Room No-322

No. of students involved : 70

Objectives:

- 1. To introduce the concept and types of Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks in cybersecurity.
- 2. To understand how DoS/DDoS attacks affect network resources and services.
- 3. To explore mitigation techniques and preventive measures used to secure networks from such attacks.

Method:

- 1. Delivered a detailed lecture using real-world case studies and attack simulations.
- 2. Demonstrated tools like LOIC/HOIC in a controlled lab environment to show how DDoS attacks are initiated and mitigated.
- 3. Encouraged group discussions and Q&A sessions to enhance understanding and clarify misconceptions.

Figure 1 & 2: SMS Application and Ping of Death Demonstration

Impact:

- 1. Students gained practical awareness of how cyberattacks are launched and their potential damage to online systems.
- 2. Improved understanding of network vulnerabilities and the importance of firewall, IDS, and rate-limiting techniques.
- 3. Developed critical thinking and preparedness in identifying and responding to cyber threats in real-time scenarios.

Figure 3 & 4: Analyzing Student's Perspectives in Cyber Security

Academic Year : 2024-2025

Name of the Course : Probability Theory & Stochastic Processes

Year & Semester : II B.Tech. I Semester

Name of the Topic : Random Variables, Random Processes Problems

and Concept

Course Faculty : Dr. Ch. Ramesh

Pedagogical Initiative : Seminar & Problem Solving

Date : 24-09-2024

Venue : Room No-321

No. of students involved : 60

Objective

 To enhance understanding of random variables and processes through interactive seminars and collaborative problem solving.

• To improve analytical, presentation, and teamwork skills.

Method of Implementation

- Students divided into 6 groups for seminar presentations on subtopics.
- Each group delivers a 10-minute seminar with Q&A.
- A set of problems is solved in peer groups, followed by board discussion.
- Faculty facilitates and evaluates participation and clarity.

- Improved student confidence in explaining core concepts.
- Enhanced teamwork, communication, and critical thinking.
- Stronger grasp of problem-solving techniques and real-time application.
- Increased classroom participation and enthusiasm for learning.

Pulladigunta (Vil), Vatticherukuru (Md), Prathipadu Road, Guntur – 522 017 A.P.

Figure 2: Student Seminar on Random Process

MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

(AUTONOMOUS)

(Accredited by "NBA" & NACC A+ Grade | Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada)
Pulladigunta (Vil), Vatticherukuru (Md), Prathipadu Road, Guntur – 522 017 A.P.

Department of Electronics and Communication Engineering INNOVATIVE TEACHING LEARNING METHOD

Academic Year : 2024-25

Name of the Course : Switching Theory & Logic Design

Year & Semester : II B.Tech. I Semester

Name of the Topic : Concept of Master – Slave Flip-flop

(Sequential Logic Circuits)

Course Faculty : Mr. T. Venkat Rao

Pedagogical Initiative: Blended learning

Date : 26-09-2024

Venue : Room No-333

No. of students involved : 65

Objectives:

1. To understand the working principle of Master–Slave Flip-Flops and their role in sequential circuits.

- 2. To differentiate between simple flip-flops and edge-triggered Master–Slave configurations.
- 3. To develop circuit analysis and timing diagram interpretation skills.

Method (Blended Learning):

- 1. Online resources including tutorial videos, interactive simulations, and animations of flip-flop operation were provided for pre-class learning.
- 2. Classroom sessions were used to discuss timing diagrams, practical applications, and real-time implementation using digital kits or simulators.
- 3. Collaborative problem-solving and quizzes were conducted both online and in-class to reinforce concepts and check understanding.

- 1. Helped students visualize the timing behavior and internal switching mechanism of Master–Slave Flip-Flops.
- 2. Improved conceptual clarity and retention through a mix of self-paced and instructor-led learning.
- 3. Enabled students to confidently design and troubleshoot sequential logic circuits in labs and projects.

MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

(AUTONOMOUS)

(Accredited by "NBA" & NACC A* Grade | Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada)
Pulladigunta (Vil), Vatticherukuru (Md), Prathipadu Road, Guntur – 522 017 A.P.

Figure 1: Interactive In-class Session on Master Slave JK Flip Flop

Figure 2: Online Learning of Master Slave JK Flip Flop

Figure 3: Online Quiz Session on Flip Flops

Academic Year : 2024-2025

Name of the Course : EDC

Year & Semester : II B.Tech. I Semester

Name of the Topic : Implementation of Amplifier circuits

Course Faculty : Mrs. K. Sarada

Pedagogical Initiative : Experiential Learning

Date : 27-09-2024

Venue : Room No - 329

No. of students involved : 35

Objectives:

- 1. To understand the working principles of various amplifier circuits such as CE, CB, and multistage amplifiers.
- 2. To bridge the gap between theoretical knowledge and practical circuit behavior.
- 3. To develop skills in designing, constructing, and troubleshooting amplifier circuits.

Method (Experiential Learning):

- 1. Students physically built amplifier circuits on breadboards.
- 2. Real-time measurements of gain, input/output waveforms, and frequency response were performed using CRO, Function Generator, and DMM.
- 3. Circuit behavior was observed under different conditions (e.g., varying load, supply voltage), encouraging exploration and discussion.

- 1. Improved hands-on proficiency in electronic circuit design, soldering, and testing.
- 2. Enhanced conceptual clarity through visualization of signal amplification and phase shift.
- 3. Boosted confidence and readiness for real-world applications like audio amplifiers and sensor signal conditioning.

MALINENI LAKSHMAIAH WOMEN'S ENGINEERING COLLEGE

(AUTONOMOUS)

(Accredited by "NBA" & NACC A* Grade | Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada)
Pulladigunta (Vil), Vatticherukuru (Md), Prathipadu Road, Guntur – 522 017 A.P.

Figure 1: Working Principle of CE Amplifier

Figure 2: Practical Realization of CE Amplifier Using Breadboard Trainer

Academic Year : 2024-25

Name of the Course : Analog IC applications

Year & Semester : III B.Tech. I Semester

Name of the Topic : 555Timer

Course Faculty : Mrs. P. Rajani

Pedagogical Initiative : PPT

Date : 25-10-2024

Venue : Room No-326

No. of students involved : 60

Objective:

- To familiarize students with the internal architecture and functional blocks of the 555 timer IC.
- To explain the working modes of the 555 timer: Astable, Monostable, and Bistable.
- To demonstrate the use of the 555 timer in timing, pulse generation, and oscillator circuits.

Method:

- PowerPoint Presentation: A visually engaging PPT was used to present the pin configuration, block diagram, working principles, and formulas.
- Circuit Diagrams & Waveforms: Detailed circuit schematics and timing diagrams were shown for each mode of operation.
- Real-world Applications: Practical examples such as LED blinkers, tone generators, and delay timers were discussed.

- Conceptual Clarity: Students gained a clear understanding of the internal operation and timing behavior of the 555 timer.
- Practical Relevance: Real-life use cases helped students appreciate the versatility of the IC in both academic and industry projects.

Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada: : Accredited by "NBA" for our CSE & ECE and NAAC A+ Grade
Pulladigunta (V) Vatticherukuru (M), Guntur (Dist.)

• Foundation for Mini-Projects: The session inspired students to consider 555-based circuits for mini-projects and lab experiments.

Figure 1 & 2: Working principle of the 555 IC Timer demonstrated through PPT

MALINENI LAKSHMAIAH

WOMEN'S ENGINEERING COLLEGE

(Accredited by "NBA" & NACC A* Grade | Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada)

Pulladigunta (Vil), Vatticherukuru (Md), Prathipadu Road, Guntur – 522 017 A.P.

Department of Electronics and Communication Engineering INNOVATIVE TEACHING LEARNING METHOD

Academic Year : 2024-25

Name of the Course : Linear Control System
Year & Semester : II B.Tech. II Semester

Name of the Topic : Translational mechanical systems

Course Faculty : Mrs. N.N. Rajakumari

Pedagogical Initiative : Brainstorming method

Date : 10-12-2024

Venue : Room No-330

No. of students involved : 60

Objectives:

- 1. To understand the basic elements of translational mechanical systems such as mass, spring, and damper.
- 2. To learn how to derive mathematical models (differential equations) for translational systems.
- 3. To visualize real-world systems like vehicle suspension and door-closing mechanisms in terms of mechanical models.

Method (Brainstorming):

- 1. Students were encouraged to identify and discuss everyday systems involving translational motion (e.g., elevator, shock absorber).
- 2. Open discussion was conducted to connect mechanical elements with electrical analogies (force-voltage, force-current).
- 3. Teams proposed and solved system models collaboratively, stimulating critical and creative thinking.

- 1. Strengthened the ability to correlate theoretical concepts with real-life mechanical systems.
- 2. Improved engagement and participation through peer discussion and collective problem-solving.

MALINENI LAKSHMAIAH

WOMEN'S ENGINEERING COLLEGE

(Accredited by "NBA" & NACC A+ Grade | Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada)

Pulladigunta (Vil), Vatticherukuru (Md), Prathipadu Road, Guntur – 522 017 A.P.

Figure 1: Open discussion on Force-Voltage Analogy

Figure 2: Open discussion on Force-Current Analogy

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING INNOVATIVE TEACHING LEARNING METHOD

Academic Year : 2024-25

Name of the Course : Analog Communication

Year & Semester : II B. Tech. II Semester

Name of the Topic : Types of pulse modulations and its responses

Course Faculty : Mrs. P. Santhi

Pedagogical Initiative: Blended Learning Method

Date : 06-02-2025

Venue : Centre of Excellence Lab (NB 102)

No. of students involved : 64

Objective:

• To introduce students to the various types of pulse modulation techniques such as PAM, PWM, PPM, and PCM.

- To explain the time and frequency responses of each modulation technique.
- To help students understand the practical significance and application areas of pulse modulation in communication systems.

Method:

- Classroom Teaching: The session began with traditional board explanations and lectures to introduce the basic concepts of pulse modulation.
- Multimedia Presentations: PowerPoint slides and video demonstrations were used to visually represent different modulation waveforms and their system responses.
- Hands-on Simulations: Simulation software MATLAB was used to show realtime pulse modulation signals.

- Improved Conceptual Understanding: Students developed a solid grasp of the types and characteristics of pulse modulation techniques.
- Practical Exposure: Simulation exercises provided students with hands-on experience in generating and analyzing pulse-modulated signals.
- Better Preparation for Labs and Projects: The session served as a useful foundation for upcoming practical labs and communication system design tasks.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Figure 1 & 2: Hands-on Session on Generating PWM Using MATLAB

Department of Electronics and Communication Engineering INNOVATIVE TEACHING LEARNING METHOD

Academic Year : 2024-25

Name of the Course : VLSI Design

Year & Semester : III B.Tech. II Semester

Name of the Topic : Implementation of Pseudo NMOS circuits

Course Faculty : Mr. T. Venkata Rao

Pedagogical Initiative : Experiential Learning

Date : 19-02-2025

Venue : Room No-315

No. of students involved : 60

Objectives:

- 1. To understand the structure, operation, and characteristics of Pseudo NMOS logic circuits.
- 2. To explore design trade-offs such as power consumption, speed, and area compared to CMOS logic.
- 3. To develop skills in simulating and implementing pseudo NMOS circuits in VLSI design tools.

Method (Experiential Learning):

- 1. Students designed and simulated Pseudo NMOS logic gates (e.g., inverter, NAND) using tools like Cadence.
- 2. Waveform analysis was conducted to compare power, delay, and switching characteristics with CMOS equivalents.
- 3. Real-world applications such as low-power digital circuits were discussed, and students applied design concepts to mini-projects.

- 1. Enhanced practical understanding of non-standard logic styles used in low-power or high-speed digital design.
- 2. Developed hands-on experience in VLSI design flow, from schematic to simulation.

Figure 1: Hands-on Session on Generating NMOS Logic Gates Using Cadence Tool